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NOMENCLATURE 

bubble base radius [m]; 
total bubble height [ml; 
radius of the sphere of which bubble is a 
segment [ml; _ 
eouivalent radius of bubble fml: 
volume of the bubble [m3];L a’ 
dimensionless time (= T/Q); 
bubble base growth constant [ml; 
bubble base growth indices; 
bubble height growth constant [m]; 
bubble height growth index; 
maximum bubble base radius [ml; 
fluid velocity [m/s]; 
distance normal to heating surface [ml; 
specific heat [J/kgK]; _ _ - 
thermal conductivitv fW/m Kl: 
latent heat of vapor&ion [J/cg]; 
temperature of saturation [K]; 
initial temperature of heating surface [K]; 
time [s] ; 
departure time [s]; 
kinematic viscosity of liquid [m’/s]; 
initial microlaver thickness fml: 
instantaneous-microlayer thickzess [m]; 
density [kg/m3]; 
thermal diffusivity [m’js] ; 
gamma function; 

rF,(a, 8, z), confluent hypergeometric series. 

Subscripts 

S, heater (solid); 
L. liquid; 
V. vapour. 

BUBBLE GROWTH MODEL 

RECENT theories of bubble growth in nucleate pool boiling 
postulate that a major portion of heat transfer to the bubble 
occurs by conduction through a liquid microlayer formed 
on the heated surface. It is therefore important that the 
base contact area of the bubble, through which heat is 
transferred, is accurately accounted for. For this purpose, 
a new bubble growth model as shown in Fig. 1 is considered. 
In this model the shape of a growing bubble is represented 
by a spherical segment of which both the radius of the base 
in contact with the heating surface, RI, and the vertical 
height above the base, H, vary with time (r). The boundary 

conditions on RI(r) and H(r) 

R,(O) = Rl(rd) = 0 

H(0) = 0 

H(TJ = 2R 

where R is the radius of the sphere of which the bubble is 
a segment and r6 is the departure time, are satisfied if 
RI and H have the forms 

RI = BI t”‘(l -t”‘) (I) 

H = Bt” 12) 
where t = s/r,andBi,ni.m,,Band n areempirical constants. 

Equations (I) and (2) are empirical in nature but appear 
to represent the physical bubble shape reasonably well. 
Measurements of RI from bubble photographs (after IO-fold 
magnification) of several investigators [l-4] as well as those 
taken by the authors during boiling ofwater over a polished 
brass surface, using an apparatus similar to that of Han 
and Griffith [l], showed that nr z 1.0 and m, z 0.2. Com- 
paring equation (1) with 

RI = Cl cl” (3) 

during the interval 0.05 < t < 0.4. we find that 

t”‘/99 < t-t’.’ < ~r’~/8.1. 

So. either equation (1) or (3) may be made to fit the same 
bubble by suitable choice of B, and C, (e.g. B, r 9C,). 
Beyond the above range, the two equations differ appreci- 
ably. It is necessary to use the best fit for R, because this 
is the only shape factor which enters the analysis of micro- 
layer evaporation. Figure2shows that plots of R, vs (t- t’.*) 
give nearly straight lines. This means that equation (1) may 
be considered to represent experimental data reasonably 
well. 

GENERAL EXPRESSION FOR MICROLAYER THICKNESS 

Assuming that during the initial rapid growth period 
(period of increasing RI) the bubble remains nearly hemi- 
spherical, the horizontal velocity L’,, induced in the liquid in 
the vicinity of the heating surface at a radial distance rl 
from the bubble centre is related to the wall velocity ~‘a, 
of the bubble having radius R,, by 

Using equations (1) and (4) 

b, = 

(4) 
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FIG. 1. Bubble growth model. 

FIG. 2. RI vs its time function 

where Ni = n,; N2 = -(3ni +mi); N3 = 3nl +2m,; N4 = 
-(nl +ml); .S1 = 3nt; S, = 3ni +mi; S, = 3ni +2mi and 
.S, = 3(ni +mJ. If the heated surface is now assumed to 
move in a direction opposite to fluid motion with velocity 
a,! and v represents the resulting velocity profilein the liquid 
the microlayer thickness & [S] under the bubble edge where 
u,, = uRI will be 

(6) 

where y is the distance normal to the heated surface. The 
velocity u(y, t) may be obtained from the solution of 
simplified Navier-Stokes equation 

?v ?% 
- = YLFJ: y>o; T>O ?r (7) 

with ~(y, 0) = 0; ~(0, T) = a,, where yr. = kinematic viscosity 
of the liquid. 

Using LaplaceeCarson transformation equation (7) 
becomes 

d2L(o) 
__ - qZL(u) = 0; 

dl.’ 
4 = &iv,); YI = YLrd (8) 

and 

The solution of equation (8) is 

which on inversion and simplification [6] becomes 

x [e-” ,F,(S, - l/2; l/2; X) - 2lYSJX”’ 

x eex ,F,(Si; 342; X)!r($- l/2)] (9) 

where 

Using equation (9) and integral formulae from reference [7] 

(10) 

where 

J(S) = r(s)/r(s, + 112). 

From equations (6) and (10) the local thickness of the micro- 
layer formed under the bubble edge is given by 

Van Ouwerkerk [S] has shown that the boundary-layer 
separation does not occur if RI = C,t”‘. It is found that 
the velocity u,> given by equation (5) is higher than that 
for van Ouwerkerk’s model (with B1 = 9Cr, n, = 1.0, 
ml = 0~2)during the time in which 0.09 < R1/Rl,max < 0.92. 
Since the period during which RI > 0.92R1,,,, is relatively 
unimportant for vapour formation, it is reasonable to assume 
that microlayer separation will not appreciably affect the 
bubble growth. 

HEAT TRANSFER TO BUBBLE 

The temperature profiles T,(J’, T) in the microlayer and 
T,(y, T) in the solid are given by the following heat- 
conduction equations (y being the distance normal to the 
solid-liquid interface and positive when measured from 
interface into the solid). 

FTL PT 
--=aL-L; 
1% w 

-6<)<O (12) 

with 

TL(O, T) = T,(O.T) (15) 

WY, 0) = T,(y, 0) = T,(a, r) = & (16) 

TL( - 6, T) z Zat (17) 
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If r9 is the time instant of microlayer formation and rgd 
the instant when the microlayer is no longer present at a 
base radius R’, then 

The solution of equations (12)-( 17) gives [9] 

TL= T,-(T,-Kat) f q” 
n=O 

x erfc(2n+l)6+Y 

[ 2J(aLd 
_ ~ erfc (2n + 116 -J’ 

2Jew) 1 (18) 

where 

9 = b- l)/(u+ 1); g = [(k,p,CP,)l(kLPr.CP,)l"* ; 

u = thermal diffusivity; k = thermal conductivity; p = den- 
sity; Cp = specific heat; and the suffixes s and L denote 
solid and liquid respectively. Also Ti and ‘IL are initial 
temperature of the heating surface and saturation tempera- 
ture respectively. 

For boiling of saturated or nearly saturated bulk liquid, 
the heat transfer to the bubble in terms of microlayer 
thickness decrease is given by (h,, = enthalpy of vapor- 
ization) 

(19) 

Using equations (18) and (19). we obtain 

d6 
~ = - [k&5 - Tsat)/[pJt,s,/‘(arLt)]] 
dr 

x 1+2 5 ~n,-nWr%r) [ “=I 1 (20) 
It has been shown by van Ouwerkerk that the ratio u 

has negligible effect on the bubble growth. A very simple 
case then emerges by assuming this ratio to be unity 
(i.e. q = 0). This amounts to the assumption of infinitely 
thick microlayer and equation (20) reduces to 

d6 
dz = - [k,(T, - Tsat)/[~~h,gJ(IIa~r)]]. (21) 

Liquid Water I. Present theory 
Pressure 0.83 bar 2. Cole and Shulman 
Jakob No 70.1 3. Han and Griffith 

Heat flux 4.4~10~ W/m2 4. Cooper 

Wall superheat 16K 5 Plesset and Zwick 
6. Exptl. data (Rw~;;t 

, 

T x 103. s 

FIG. 3. Comparison of theoretical and experimental bubble 
growth results. 

s ’ dS 
-dr = 0: 

r.d dr 
r > r&Vi 

The volume V, of bubble formed as a result of microlayer 
evaporation may then be written as 

RI 

I/h(r) = - (PL.lP”) s s’ 2ltR’ %dsdR’; T < T max IW 
0 TP ds 

or 

+ js;m’X2nRj;gdrdR$ 

r > T”13X (23) 

where r,,, corresponds to Rl,max and pv is the vapour 
density. The equivalent radius R,, of a spherical bubble 
having volume V, is then given by 

R,, = [3V,/(4n)]1’3. (24) 

RESULTS 

The results obtained on the basis of the above theory 
(curves 1) have been compared with those of the previous 
theories (curves 2-5) as well as with experimental results in 
Figs. 3 and 4. Experimental values of R,, and the empirical 
constants Bi, ni and m, were computed from the measured 
values of RI and H. 
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4. Comparison of theoretical and experimental bubble 
growth results. 



472 Shorter Communications 

CONCLUSIONS 

1. It appears more appropriate to assume that the bubble 
shape is represented by a spherical segment characterized 
by the base radius Ri and the vertical height H. 

2. A general expression has been developed for initial 
microlayer thickness. 

3. The bubble growth curves obtained on the basis of the 
assumption of “infinitely thick microlayer”. i.e. k,p,Cp, = 
k,p,Cp, are in satisfactory agreement with experimental 
results. 

4. 

5. 

6. 

I. 
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NOMENCLATURE 

C,. C,,, drag coefficients; 
spe&c heat of liquid [J/kg-K] ; 
bubble diameter fml: 

L 2. 

diameter of bubble neck in contact with heating 
surface at departure [ml; 
bubble diameter at departure [m]; 
force normal to heating surface IN]; 
acceleration due to gravity [m/s 1; 
average heat-transfer coefficient [W/m’-K]; 
latent heat of vaporization of bulk liquid [J/kg]; 
thermal conductivity of liquid [W/m-K]; 
Jakob number (CpLPLAT/hl,Pv); 
heat flux [W/m’]; 
time [s]; 
wall temperature [OK]; 
saturation temperature [“K]; 
bulk liquid temperature [OK]; 
wall superheat [“K] ; 
velocity of center of bubble, 

i$[misl: 
normal velocity of bubble front, dD/dt [m/s]; 1. At the instant of departure the bubble is spherical in 
terminal velocity [m/s]; shape and it is attached to the heating surface by a short 
thickness of superheated liquid layer [m]; neck of diameter D, and having a contact angle 6 z n/2. 

liquid density [kg/m’]; 
vapor density [kg/m’]; 
coefficient of surface tension [N/m]; 
contact angle [rad]. 

INTRODUCTION 

IT IS well known that at low values of Jakob number the 
bubble growth rates and departure diameters are small and 
bubble departure is controlled primarily by the surface 
tension force, the inertia (drag and liquid inertia) forces being 
relatively small. At high values of Jakob number, on the 
other hand, the growth rates and departure diameters are 
large and inertia forces control bubble departure. The object 
of this paper is to obtain quantitatively the Jakob number 
ranges over which the surface tension force and inertia forces 
control, respectively, the process of bubble departure. 

THEORETICAL ANALYSIS 

Assumptions 
The following assumptions have been made: 


